GMS location: 956
Random forest results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
0.987 |
0.000e+00 |
0.408 |
0.500 |
2.057 |
NaN |
NaN |
forest |
winter 2016 |
0.987 |
0.040 |
0.311 |
0.422 |
1.869 |
0.439 |
2.853 |
baseline |
winter 2017 |
1.000 |
0.000e+00 |
0.394 |
0.429 |
2.463 |
NaN |
NaN |
forest |
winter 2017 |
1.000 |
0.024 |
0.286 |
0.365 |
2.171 |
0.433 |
2.203 |
baseline |
winter 2018 |
0.986 |
0.030 |
0.602 |
0.495 |
5.183 |
NaN |
NaN |
forest |
winter 2018 |
0.993 |
0.000e+00 |
0.483 |
0.448 |
4.691 |
0.441 |
2.401 |
baseline |
winter 2019 |
0.993 |
0.000e+00 |
0.346 |
0.427 |
2.606 |
NaN |
NaN |
forest |
winter 2019 |
0.993 |
0.000e+00 |
0.324 |
0.407 |
2.496 |
0.409 |
1.650 |
baseline |
all |
0.991 |
8.300e-03 |
0.442 |
0.465 |
5.183 |
NaN |
NaN |
forest |
all |
0.993 |
0.017 |
0.354 |
0.412 |
4.691 |
0.431 |
2.295 |
Random forest plots
Extended logistic regression results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
0.987 |
0.000e+00 |
0.408 |
0.500 |
2.057 |
NaN |
NaN |
elr |
winter 2016 |
0.987 |
0.040 |
0.354 |
0.454 |
2.046 |
0.513 |
2.723 |
baseline |
winter 2017 |
1.000 |
0.000e+00 |
0.394 |
0.429 |
2.463 |
NaN |
NaN |
elr |
winter 2017 |
1.000 |
0.048 |
0.337 |
0.407 |
2.473 |
0.489 |
2.456 |
baseline |
winter 2018 |
0.986 |
0.030 |
0.602 |
0.495 |
5.183 |
NaN |
NaN |
elr |
winter 2018 |
0.993 |
0.000e+00 |
0.483 |
0.420 |
5.117 |
0.488 |
3.468 |
baseline |
winter 2019 |
0.993 |
0.000e+00 |
0.346 |
0.427 |
2.606 |
NaN |
NaN |
elr |
winter 2019 |
0.993 |
0.000e+00 |
0.334 |
0.426 |
2.675 |
0.469 |
2.144 |
baseline |
all |
0.991 |
8.300e-03 |
0.442 |
0.465 |
5.183 |
NaN |
NaN |
elr |
all |
0.993 |
0.025 |
0.380 |
0.427 |
5.117 |
0.490 |
2.722 |
Extended logistic regression plots