GMS location: 900
Random forest results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
0.994 |
0.087 |
0.471 |
0.465 |
5.025 |
NaN |
NaN |
forest |
winter 2016 |
0.994 |
0.130 |
0.384 |
0.392 |
5.122 |
0.512 |
5.474 |
baseline |
winter 2017 |
0.982 |
0.048 |
0.363 |
0.450 |
2.404 |
NaN |
NaN |
forest |
winter 2017 |
0.973 |
0.000e+00 |
0.276 |
0.381 |
2.122 |
0.490 |
4.575 |
baseline |
winter 2018 |
0.980 |
0.067 |
0.330 |
0.431 |
2.197 |
NaN |
NaN |
forest |
winter 2018 |
0.987 |
0.033 |
0.278 |
0.395 |
2.043 |
0.509 |
4.279 |
baseline |
winter 2019 |
0.986 |
0.000e+00 |
0.294 |
0.400 |
2.236 |
NaN |
NaN |
forest |
winter 2019 |
0.979 |
0.000e+00 |
0.218 |
0.332 |
2.539 |
0.518 |
3.682 |
baseline |
all |
0.986 |
0.055 |
0.369 |
0.438 |
5.025 |
NaN |
NaN |
forest |
all |
0.984 |
0.037 |
0.294 |
0.376 |
5.122 |
0.507 |
4.546 |
Random forest plots
Extended logistic regression results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
0.994 |
0.087 |
0.471 |
0.465 |
5.025 |
NaN |
NaN |
elr |
winter 2016 |
0.994 |
0.217 |
0.432 |
0.447 |
4.694 |
0.611 |
7.947 |
baseline |
winter 2017 |
0.982 |
0.048 |
0.363 |
0.450 |
2.404 |
NaN |
NaN |
elr |
winter 2017 |
0.973 |
0.024 |
0.293 |
0.408 |
2.060 |
0.565 |
4.568 |
baseline |
winter 2018 |
0.980 |
0.067 |
0.330 |
0.431 |
2.197 |
NaN |
NaN |
elr |
winter 2018 |
0.993 |
0.000e+00 |
0.291 |
0.401 |
2.131 |
0.565 |
4.410 |
baseline |
winter 2019 |
0.986 |
0.000e+00 |
0.294 |
0.400 |
2.236 |
NaN |
NaN |
elr |
winter 2019 |
0.979 |
0.000e+00 |
0.244 |
0.368 |
2.524 |
0.537 |
3.461 |
baseline |
all |
0.986 |
0.055 |
0.369 |
0.438 |
5.025 |
NaN |
NaN |
elr |
all |
0.986 |
0.055 |
0.320 |
0.408 |
4.694 |
0.572 |
5.229 |
Extended logistic regression plots