GMS location: 839
Random forest results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
0.977 |
0.053 |
0.396 |
0.457 |
2.506 |
NaN |
NaN |
forest |
winter 2016 |
0.994 |
0.000e+00 |
0.340 |
0.415 |
2.193 |
0.452 |
2.895 |
baseline |
winter 2017 |
0.991 |
0.057 |
0.315 |
0.391 |
3.176 |
NaN |
NaN |
forest |
winter 2017 |
0.983 |
0.029 |
0.270 |
0.361 |
2.227 |
0.452 |
2.429 |
baseline |
winter 2018 |
0.980 |
0.000e+00 |
0.431 |
0.495 |
2.322 |
NaN |
NaN |
forest |
winter 2018 |
0.974 |
0.045 |
0.352 |
0.446 |
2.292 |
0.455 |
2.694 |
baseline |
winter 2019 |
0.967 |
0.000e+00 |
0.321 |
0.395 |
1.883 |
NaN |
NaN |
forest |
winter 2019 |
0.983 |
0.056 |
0.245 |
0.345 |
2.022 |
0.442 |
2.419 |
baseline |
all |
0.979 |
0.032 |
0.371 |
0.439 |
3.176 |
NaN |
NaN |
forest |
all |
0.984 |
0.032 |
0.307 |
0.396 |
2.292 |
0.450 |
2.636 |
Random forest plots
Extended logistic regression results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
0.977 |
0.053 |
0.396 |
0.457 |
2.506 |
NaN |
NaN |
elr |
winter 2016 |
0.989 |
0.053 |
0.350 |
0.444 |
1.914 |
0.534 |
3.789 |
baseline |
winter 2017 |
0.991 |
0.057 |
0.315 |
0.391 |
3.176 |
NaN |
NaN |
elr |
winter 2017 |
0.983 |
0.029 |
0.271 |
0.373 |
2.009 |
0.518 |
3.291 |
baseline |
winter 2018 |
0.980 |
0.000e+00 |
0.431 |
0.495 |
2.322 |
NaN |
NaN |
elr |
winter 2018 |
0.980 |
0.045 |
0.346 |
0.447 |
2.236 |
0.522 |
4.024 |
baseline |
winter 2019 |
0.967 |
0.000e+00 |
0.321 |
0.395 |
1.883 |
NaN |
NaN |
elr |
winter 2019 |
0.983 |
0.000e+00 |
0.236 |
0.368 |
1.492 |
0.513 |
3.344 |
baseline |
all |
0.979 |
0.032 |
0.371 |
0.439 |
3.176 |
NaN |
NaN |
elr |
all |
0.984 |
0.032 |
0.307 |
0.412 |
2.236 |
0.523 |
3.645 |
Extended logistic regression plots