GMS location: 723
Random forest results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
0.983 |
0.000e+00 |
0.302 |
0.411 |
1.924 |
NaN |
NaN |
forest |
winter 2016 |
0.989 |
0.000e+00 |
0.293 |
0.411 |
1.804 |
0.448 |
3.107 |
baseline |
winter 2017 |
0.983 |
0.000e+00 |
0.296 |
0.402 |
1.839 |
NaN |
NaN |
forest |
winter 2017 |
0.983 |
0.029 |
0.239 |
0.369 |
1.505 |
0.436 |
4.122 |
baseline |
winter 2018 |
0.993 |
0.118 |
0.418 |
0.476 |
2.882 |
NaN |
NaN |
forest |
winter 2018 |
0.993 |
0.088 |
0.344 |
0.424 |
2.834 |
0.443 |
3.608 |
baseline |
winter 2019 |
0.980 |
0.000e+00 |
0.335 |
0.426 |
2.250 |
NaN |
NaN |
forest |
winter 2019 |
0.980 |
0.000e+00 |
0.263 |
0.388 |
1.808 |
0.445 |
2.833 |
baseline |
all |
0.985 |
0.040 |
0.339 |
0.430 |
2.882 |
NaN |
NaN |
forest |
all |
0.987 |
0.040 |
0.288 |
0.400 |
2.834 |
0.443 |
3.399 |
Random forest plots
Extended logistic regression results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
0.983 |
0.000e+00 |
0.302 |
0.411 |
1.924 |
NaN |
NaN |
elr |
winter 2016 |
0.983 |
0.000e+00 |
0.309 |
0.424 |
1.753 |
0.503 |
3.609 |
baseline |
winter 2017 |
0.983 |
0.000e+00 |
0.296 |
0.402 |
1.839 |
NaN |
NaN |
elr |
winter 2017 |
0.966 |
0.029 |
0.270 |
0.389 |
1.656 |
0.477 |
3.046 |
baseline |
winter 2018 |
0.993 |
0.118 |
0.418 |
0.476 |
2.882 |
NaN |
NaN |
elr |
winter 2018 |
0.993 |
0.118 |
0.406 |
0.453 |
3.312 |
0.490 |
3.857 |
baseline |
winter 2019 |
0.980 |
0.000e+00 |
0.335 |
0.426 |
2.250 |
NaN |
NaN |
elr |
winter 2019 |
0.980 |
0.000e+00 |
0.314 |
0.433 |
1.988 |
0.467 |
2.856 |
baseline |
all |
0.985 |
0.040 |
0.339 |
0.430 |
2.882 |
NaN |
NaN |
elr |
all |
0.982 |
0.050 |
0.327 |
0.426 |
3.312 |
0.485 |
3.377 |
Extended logistic regression plots