GMS location: 479
Random forest results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
1.000 |
0.033 |
0.285 |
0.412 |
1.781 |
NaN |
NaN |
forest |
winter 2016 |
0.994 |
0.033 |
0.257 |
0.387 |
1.654 |
0.632 |
1.868 |
baseline |
winter 2017 |
0.991 |
0.000e+00 |
4.867 |
0.785 |
1.348e+01 |
NaN |
NaN |
forest |
winter 2017 |
0.991 |
0.023 |
4.754 |
0.725 |
1.338e+01 |
0.459 |
4.531 |
baseline |
winter 2018 |
0.982 |
0.000e+00 |
0.327 |
0.404 |
2.914 |
NaN |
NaN |
forest |
winter 2018 |
0.991 |
0.074 |
0.408 |
0.453 |
2.855 |
0.746 |
2.056 |
baseline |
winter 2019 |
0.992 |
0.000e+00 |
0.295 |
0.386 |
1.915 |
NaN |
NaN |
forest |
winter 2019 |
1.000 |
0.000e+00 |
0.232 |
0.338 |
1.653 |
0.633 |
2.009 |
baseline |
all |
0.992 |
8.800e-03 |
1.436 |
0.498 |
1.348e+01 |
NaN |
NaN |
forest |
all |
0.994 |
0.035 |
1.403 |
0.475 |
1.338e+01 |
0.615 |
2.604 |
Random forest plots
Extended logistic regression results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
1.000 |
0.033 |
0.285 |
0.412 |
1.781 |
NaN |
NaN |
elr |
winter 2016 |
0.987 |
0.067 |
0.318 |
0.435 |
2.051 |
0.525 |
2.318 |
baseline |
winter 2017 |
0.991 |
0.000e+00 |
4.867 |
0.785 |
1.348e+01 |
NaN |
NaN |
elr |
winter 2017 |
0.991 |
0.023 |
4.819 |
0.753 |
1.352e+01 |
0.531 |
7.243 |
baseline |
winter 2018 |
0.982 |
0.000e+00 |
0.327 |
0.404 |
2.914 |
NaN |
NaN |
elr |
winter 2018 |
0.991 |
0.074 |
0.396 |
0.445 |
3.547 |
0.511 |
2.261 |
baseline |
winter 2019 |
0.992 |
0.000e+00 |
0.295 |
0.386 |
1.915 |
NaN |
NaN |
elr |
winter 2019 |
1.000 |
0.083 |
0.221 |
0.345 |
1.609 |
0.446 |
1.319 |
baseline |
all |
0.992 |
8.800e-03 |
1.436 |
0.498 |
1.348e+01 |
NaN |
NaN |
elr |
all |
0.992 |
0.053 |
1.434 |
0.496 |
1.352e+01 |
0.506 |
3.310 |
Extended logistic regression plots