GMS location: 423
Random forest results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
1.000 |
0.000e+00 |
0.293 |
0.414 |
1.999 |
NaN |
NaN |
forest |
winter 2016 |
1.000 |
0.000e+00 |
0.236 |
0.350 |
1.978 |
0.455 |
3.537 |
baseline |
winter 2017 |
0.972 |
0.026 |
0.495 |
0.504 |
3.254 |
NaN |
NaN |
forest |
winter 2017 |
0.972 |
0.026 |
0.336 |
0.422 |
2.547 |
0.431 |
3.424 |
baseline |
winter 2018 |
0.977 |
0.118 |
0.315 |
0.399 |
2.091 |
NaN |
NaN |
forest |
winter 2018 |
0.985 |
0.118 |
0.288 |
0.383 |
1.925 |
0.432 |
2.996 |
baseline |
winter 2019 |
1.000 |
0.000e+00 |
0.286 |
0.378 |
2.200 |
NaN |
NaN |
forest |
winter 2019 |
1.000 |
0.167 |
0.261 |
0.375 |
2.119 |
0.436 |
3.230 |
baseline |
all |
0.989 |
0.048 |
0.343 |
0.424 |
3.254 |
NaN |
NaN |
forest |
all |
0.991 |
0.057 |
0.277 |
0.380 |
2.547 |
0.440 |
3.311 |
Random forest plots
Extended logistic regression results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
1.000 |
0.000e+00 |
0.293 |
0.414 |
1.999 |
NaN |
NaN |
elr |
winter 2016 |
0.994 |
0.000e+00 |
0.292 |
0.418 |
2.031 |
0.514 |
3.765 |
baseline |
winter 2017 |
0.972 |
0.026 |
0.495 |
0.504 |
3.254 |
NaN |
NaN |
elr |
winter 2017 |
0.962 |
0.026 |
0.420 |
0.480 |
2.850 |
0.477 |
3.793 |
baseline |
winter 2018 |
0.977 |
0.118 |
0.315 |
0.399 |
2.091 |
NaN |
NaN |
elr |
winter 2018 |
0.977 |
0.088 |
0.311 |
0.411 |
2.134 |
0.518 |
3.865 |
baseline |
winter 2019 |
1.000 |
0.000e+00 |
0.286 |
0.378 |
2.200 |
NaN |
NaN |
elr |
winter 2019 |
1.000 |
0.000e+00 |
0.364 |
0.458 |
2.113 |
0.475 |
3.366 |
baseline |
all |
0.989 |
0.048 |
0.343 |
0.424 |
3.254 |
NaN |
NaN |
elr |
all |
0.985 |
0.038 |
0.340 |
0.438 |
2.850 |
0.499 |
3.721 |
Extended logistic regression plots