GMS location: 356
Random forest results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
0.983 |
0.062 |
0.328 |
0.434 |
1.817 |
NaN |
NaN |
forest |
winter 2016 |
1.000 |
0.062 |
0.279 |
0.402 |
1.630 |
0.437 |
2.911 |
baseline |
winter 2017 |
0.950 |
0.062 |
0.315 |
0.408 |
2.511 |
NaN |
NaN |
forest |
winter 2017 |
0.967 |
0.062 |
0.263 |
0.376 |
1.841 |
0.446 |
3.105 |
baseline |
winter 2018 |
0.987 |
0.083 |
0.358 |
0.451 |
2.199 |
NaN |
NaN |
forest |
winter 2018 |
0.987 |
0.083 |
0.337 |
0.436 |
1.922 |
0.449 |
3.229 |
baseline |
winter 2019 |
0.987 |
0.077 |
0.275 |
0.378 |
2.124 |
NaN |
NaN |
forest |
winter 2019 |
0.994 |
0.077 |
0.242 |
0.363 |
1.938 |
0.450 |
3.009 |
baseline |
all |
0.979 |
0.071 |
0.320 |
0.419 |
2.511 |
NaN |
NaN |
forest |
all |
0.989 |
0.071 |
0.281 |
0.396 |
1.938 |
0.445 |
3.059 |
Random forest plots
Extended logistic regression results
names |
period |
power |
significance |
meanSquareError |
absError |
maxError |
CRPS |
IGN |
baseline |
winter 2016 |
0.983 |
0.062 |
0.328 |
0.434 |
1.817 |
NaN |
NaN |
elr |
winter 2016 |
0.989 |
0.062 |
0.285 |
0.420 |
1.630 |
0.493 |
3.671 |
baseline |
winter 2017 |
0.950 |
0.062 |
0.315 |
0.408 |
2.511 |
NaN |
NaN |
elr |
winter 2017 |
0.967 |
0.062 |
0.291 |
0.399 |
2.239 |
0.492 |
4.076 |
baseline |
winter 2018 |
0.987 |
0.083 |
0.358 |
0.451 |
2.199 |
NaN |
NaN |
elr |
winter 2018 |
0.987 |
0.083 |
0.342 |
0.455 |
1.760 |
0.494 |
4.160 |
baseline |
winter 2019 |
0.987 |
0.077 |
0.275 |
0.378 |
2.124 |
NaN |
NaN |
elr |
winter 2019 |
0.987 |
0.077 |
0.226 |
0.354 |
1.683 |
0.483 |
3.208 |
baseline |
all |
0.979 |
0.071 |
0.320 |
0.419 |
2.511 |
NaN |
NaN |
elr |
all |
0.984 |
0.071 |
0.287 |
0.408 |
2.239 |
0.491 |
3.774 |
Extended logistic regression plots